Product Description
Thermally broken unitized curtain wall - Capped and SSG.

Composition & Materials
- 6063 alloy, T6 or T5 temper aluminum extrusions
- Polyamide Thermal Break
- Extruded EPDM air seal gaskets and silicone gaskets
- Structural extruded silicone glazing spacer is compatible with structural silicone sealants
- When necessary, internal reinforcing members are galvanized steel to suit engineering requirements
- Anchor devices may be a combination of pre-manufactured aluminum or steel components; project specific designs and/or cadmium plated fasteners

Finishes
Anodic coated finishes in Class I and Class II and architectural painted finishes are available. Also, two colour (exterior and interior) finishes are possible

Limitations
- Curtain wall applications should be reviewed by a qualified engineer for structural and load requirements
- Curtain wall is intended to be installed perpendicular (90 Degrees) to the floor. Any attempts to change this should be presented to Alumicor at the design stage to ensure drainage paths are maintained
- Panels sizes, modules, spans and expansion/stack joint locations should be considered early in design stages
- Contact Alumicor for technical support

Warranty
Alumicor standard product warranty applies. Extended warranties may be available. Alumicor’s product warranties can be reviewed at www.alumicor.com

Filing System
MasterFormat, UniFormat or OmniClass

Technical Services
Contact any Alumicor regional office by visiting www.alumicor.com

Features & Benefits
- Fully thermally broken UNITIZED curtain wall
- Suitable for medium to high-rise curtain wall designs.
- 2½” & 3” profile widths available. Variable mullion depths as required. 5¼” & 6 5/8” are primary design options
- Available in double and triple glazed
- Horizontal stack joint available in both capped and SSG versions, to support building movement
- True side-load or rotational installation offers flexibility during panel insertion
- Full structural silicone bead on all glazed components, to eliminate potential for leaking in the field
- Unique carrier to accommodate any structural steel, sunshade or louver bracketry
- Allows fabrication and complete unitizing in the shop. This controlled environment allows for the quality of the system to be better managed
- Reduces the cost of field installation when compared to a stick system. Unitizing allows the building to be closed in more quickly than a stick system, all without the need to perform any tasks on the outside of the building
- Composite action “Bigfoot” thermal break offers increase resistance to wind load and true a full thermal break
- Shadow box spandrel panel option
- Compatible with Alumicor operable windows, doors, etc.
- Variety of custom caps available and special caps can be designed as per project requirements
- Unique glass support eliminates concerns of dead loads on the thermal break
- Flexible to accommodate any design needs, including large caps, sunshades and louvers as well as high wind load requirements
- Proprietary gaskets for improved thermal performance.
- Tested to AAMA 501 requirements.
Design Considerations

- It is important for designers and specifiers to ensure that competent manufacturer’s representatives are involved in the early stages of the project.
- Some of the considerations that must be addressed at the early design stages are:
 - Design loads
 - Glazing infills (both vision, spandrel and operables)
 - Building construction components (and their effects upon the curtain wall)
 - Thermal performance requirements
 - Seismic requirements
 - Integration of the curtain wall into adjacent construction
 - Modules and spans

Applicable Standards

ASTM E283 Standard Test Method for Determining Rate of Air Leakage through Exterior Windows, Curtain Walls and Doors under Specified Pressure Differences across the Specimen
ASTM E331 – Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference
AAMA 501.1 – Standard Test Method for Water Penetration of Windows, Curtain Walls, and Doors using Dynamic Pressure
AAMA 501.4 – Static Test Method for Evaluating Curtain Wall and Store Front Systems subjected to Seismic and Wind Induced Inter Story Drifts
AAMA 501.5 – Test Method for Thermal Cycling of Exterior Walls
AAMA 501.7 – Static Test Method for Evaluating Windows, Window Wall, Curtain Wall, and Store Front Systems subjected to Vertical Inter Story Movements

Maintenance

Cleaning should be undertaken as soon as possible after installation to remove construction and environmental dirt and impurities. Cleaning should begin at the top of the building and proceed downward in a continuous operation. Care should be taken to prevent the use of procedures and cleaning materials that could damage the finishes of the aluminum, glass, infill panels or adjacent building components. The curtain wall system should be cleaned annually using approved, non-abrasive cleaners and potable water. Cleaning of aluminum components should be performed in accordance with AAMA 609.1 and 610.2.

Installation

Alumicor recommends that installation be by authorized Alumicor dealers. Contact your Alumicor representative to confirm the trade contractor is authorized to install Alumicor products. Specifiers may wish to incorporate the requirement of a Product Confirmation as a Submittals requirement. Adhere to design, specifications, manufacturers published manuals and recommended industry practice.

Availability & Cost

Availability: Available through authorized Alumicor dealers that are competent in fabrication, assembly and/or installation of the system.
Cost: The cost is dependent upon design, extent of project, finishes, glazing infill’s, custom requirements, and project location. Contact Alumicor regional offices for pricing and/or a list of authorized Alumicor dealers that are authorized in fabrication, assembly and/or installation of the system.

Physical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Infiltration 300 Pa (6.26 psf)</td>
<td>ASTM E283</td>
<td>Allowable - 0.0003 m³/s/m² (0.06 cfm/ft²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Results - 0.0004 m³/s/m² (0.00701 cfm/ft²)</td>
</tr>
<tr>
<td>Air Exfiltration 300 Pa (6.26 psf)</td>
<td>ASTM E283</td>
<td>Allowable - 0.0003 m³/s/m² (0.06 cfm/ft²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Results – 0.0004 m³/s/m² (0.00701 cfm/ft²)</td>
</tr>
<tr>
<td>Water Penetration by Static Air Pressure Difference</td>
<td>ASTM E331</td>
<td>Allowable - No uncontrolled water penetration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Results - Passed @ 720 Pa (15.04 psf)</td>
</tr>
<tr>
<td>Water Penetration by Dynamic Pressure Difference</td>
<td>AAMA 501.1</td>
<td>Allowable - No uncontrolled water penetration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Results - Passed @ 720 Pa (15.04 psf)</td>
</tr>
<tr>
<td>Uniform Load Deflection</td>
<td>ASTM E330</td>
<td>Allowable - L/175</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Passed - +2394 Pa, (+50 psf) - 2394 Pa, (-50 psf)</td>
</tr>
<tr>
<td>Uniform Load Structural</td>
<td>ASTM E330</td>
<td>Allowable - L/250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Passed - +3591 Pa, (+75 psf) - 3591 Pa, (-75 psf)</td>
</tr>
<tr>
<td>Horizontal Interystory Movement</td>
<td>AAMA 501.4</td>
<td>Passed - 3 Cycles of Movement at +/- 19.1mm (0.75 in)</td>
</tr>
<tr>
<td>Vertical Interystory Movement</td>
<td>AAMA 501.7</td>
<td>Passed - 3 Cycles of Movement at +/- 12.7mm (0.50 in)</td>
</tr>
<tr>
<td>Thermal Cycling</td>
<td>AAMA 501.5</td>
<td>Passed - 3 Cycles of Interior Temperature +21°C & Exterior Temperature -35°C to + 60°C</td>
</tr>
</tbody>
</table>

*Tests performed by Exova, 2395 Speakman Dr. Mississauga, Ontario, L5K 1B3. Copies of test reports available upon request.